On A Fixed-Charge Grid Network Polyhedron

Minjiao Zhang1 Simge K"uc"ukyavuz1 Hande Yaman2
Supported, in part, by NSF \#0917952.

1Integrated Systems Engineering, The Ohio State University, USA
2Department of Industrial Engineering, Bilkent University, Turkey

Integer Programming Down Under Workshop, 2011
Outline

1. Introduction
2. Dynamic Program
3. Alternative Formulations
4. Computational Results
Fixed-Charge Grid Network
Motivation

- Distribution or production systems with multiple echelons. (e.g., the regional distribution centers and local retailers)
- Two-echelon lot-sizing problem in series and with intermediate demands (2-ULS).
- Fixed and variable order costs, and variable holding costs at each echelon.
- Goal: Determine the order plan over a finite horizon to meet the demand at both echelons in each period with the minimum total cost:
Related work

- **Single echelon lot-sizing:**
 Wagner and Whitin, 1958; Krarup and Bilde, 1977; Eppen and Martin, 1987; Barany et al, 1984;

- **Serial multi-echelon lot-sizing without intermediate demands:**
 Veinott, 1969; Zangwill, 1969; Pochet and Wolsey, 2006; Melo and Wolsey, 2010

- **Complex bill-of-materials:**
 Gaglioppa, Miller and Benjaafar, 2008; Akartunalı and Miller, 2009; Wu et al., 2011.
Notation

Parameters

- $d^i_t \geq 0$: the demand in period t at the ith echelon, and $d^i_{tk} = \sum_{j=t}^k d^i_j$.
- f^i_t: fixed cost incurred in period t at echelon i.
- \tilde{c}^i_t: variable cost incurred in period t at echelon i.
- h^i_t: holding cost at echelon i at the end of period t.
- $[i, j]$: the interval $\{i, i + 1, \ldots, j\}$ for $i \leq j$, and $[i, j] = \emptyset$ for $i > j$.

Variables

- x^i_t: the order quantity at echelon i in period t.
- s^i_t: the inventory at echelon i at the end of period t.
- y^i_t: the order setup variable at echelon i in period t; $y^i_t = 1$ if $x^i_t > 0$; $y^i_t = 0$ otherwise.
Formulation

\[
\begin{align*}
\text{min} & \sum_{i=1}^{2} \sum_{t=1}^{n} (f_{i}^{i} y_{i}^{t} + \bar{c}_{i}^{i} x_{i}^{t} + h_{i}^{i} s_{i}^{t}) \\
\text{s.t.} & \quad s_{i}^{t-1} + x_{i}^{t} = d_{i}^{1} + x_{i}^{t} + s_{i}^{t} \quad t \in [1, n], \\
& \quad s_{i}^{t-1} + x_{i}^{t} = d_{i}^{2} + s_{i}^{t} \quad t \in [1, n], \\
& \quad s_{i}^{0} = s_{i}^{n} = 0 \quad i \in [1, 2], \\
& \quad x_{i}^{1} \leq (d_{i}^{1} + d_{i}^{2}) y_{i}^{1} \quad t \in [1, n], \\
& \quad x_{i}^{2} \leq d_{i}^{2} y_{i}^{2} \quad t \in [1, n], \\
& \quad y_{i}^{t} \in \{0, 1\} \quad t \in [1, n], i \in [1, 2], \\
& \quad x_{i}^{t} \geq 0 \quad t \in [1, n], i \in [1, 2], \\
& \quad s_{i}^{t} \geq 0 \quad t \in [1, n], i \in [1, 2].
\end{align*}
\]
Extreme Point Solutions

- (i_1, i_2, j_1, j_2) is defined as a **regeneration interval** if for $i_1 \leq j_1 \leq j_2$, $s_{i_1-1}^1 = s_{i_2}^1 = s_{j_1-1}^2 = s_{j_2}^2 = 0$, $x_{i_1}^1 = d_{i_1i_2}^1 + d_{j_1j_2}^2$, or for $j_1 = j_2 + 1$, $s_{i_1-1}^1 = s_{i_2}^1 = 0$, $x_{i_1}^1 = d_{i_1i_2}^1$.

- (j_1, j_2) is defined as a **regeneration subinterval** with $1 \leq j_1 \leq j_2 \leq n$ and $s_{j_1-1}^2 = s_{j_2}^2 = 0$, $x_{j_1}^2 = d_{j_1j_2}^2$.

(1, 3, 1, 5), (4, 4, 5, 4), (5, 6, 6, 6) are regeneration intervals. (3, 5), (1, 2), (6, 6) are regeneration subintervals.
Dynamic Programming Recursion

- \(G(i_2, j_2) \): the minimum cost of satisfying the demand in periods 1 to \(i_2 \) at the first echelon and the demand in periods 1 to \(j_2 \) at the second echelon, \(0 \leq i_2 \leq j_2 \leq n \). \(G(0, 0) = 0 \) and \(G(0, k) = \infty \) if \(k \in [1, n] \).
- \(H(j_1, j_2) \): the minimum cost to satisfy the demand in periods \(j_1 \) to \(j_2 \) at the second echelon, \(1 \leq j_1 \leq n + 1, 0 \leq j_2 \leq n \). \(H(j_1, j_2) = 0 \) if \(j_1 > j_2 \).

Forward DP recursion

For \(1 \leq i_2 \leq j_2 \leq n \),

\[
G(i_2, j_2) = \min_{1 \leq i_1 \leq i_2} \{ G(i_1 - 1, j_1 - 1) + f_{i_1}^1 + c_{i_1}^1 d_{i_1 i_2}^1 + c_{i_1}^1 d_{j_1 j_2}^2 + H(j_1, j_2) \};
\]

for \(1 \leq j_1 \leq j_2 \leq n \),

\[
H(j_1, j_2) = \min_{j_1 \leq j_3 \leq j_2} \{ H(j_1, j_3 - 1) + f_{j_3}^2 + c_{j_3}^2 d_{j_3 j_2}^2 \}.
\]

- Running time of DP: \(O(n^4) \).
- If \(d_{j}^1 = 0, \forall j \), the DP is equivalent to that of Melo and Wolsey (2010).
DP-based extended formulation (DPEF)

- DPEF is the dual of the LP model based on the DP recursions.
- Variables:
 - \(v_{i_1 i_2 j_1 j_2} = 1 \) if \((i_1, i_2, j_1, j_2)\) is a regeneration interval; otherwise, \(v_{i_1 i_2 j_1 j_2} = 0 \).
 - \(w_{j_1 j_3 j_2} = 1 \) if \((j_3, j_2)\) is a regeneration subinterval; otherwise, \(w_{j_1 j_3 j_2} = 0 \).

\[
\begin{align*}
(1,1) & \rightarrow (2,1) \rightarrow (3,1) \rightarrow (4,1) \rightarrow (5,1) \rightarrow (6,1) \\
(1,2) & \rightarrow (2,2) \rightarrow (3,2) \rightarrow (4,2) \rightarrow (5,2) \rightarrow (6,2)
\end{align*}
\]

\(v_{1315} = 1, v_{4454} = 1, v_{5666} = 1 \) and \(w_{135} = 1, w_{112} = 1, w_{666} = 1 \).

- DPEF is **tight** and **compact**: \(O(n^4) \) variables and \(O(n^3) \) constraints.
Valid Inequalities

Define $\beta(T, k)$ as the set of consecutive elements in set T starting from k, where if $k \notin T$, $\beta(T, k) = \emptyset$.

Theorem (Zhang, K., Yaman, 2011)

For $0 \leq k \leq l \leq n$, let $T_1 \subseteq [1, k]$, $C \subseteq [1, k]$, $T_2 = C \cup [k + 1, l]$ and $T_3 \subseteq T_2$. Then the 2-echelon inequality

$$
\sum_{j \in [1,k] \setminus T_1} x_j^1 + \sum_{j \in T_1} \phi_j y_j^1 + \sum_{j \in T_2 \setminus T_3} x_j^2 + \sum_{j \in T_3} \psi_j y_j^2 \geq d_{1k}^1 + d_{1l}^2
$$

is valid for 2-ULS and facet-defining under certain conditions, where $\psi_j = \sum_{i \in \beta(T_2, j)} d_i^2$ and $\phi_j = d_{jk}^1 + d_{jl}^2 - \psi_j$.

2-echelon inequalities subsume (ℓ, S) inequalities of Barany et al. (1984)
e.g. For $n = 6$, $k = 4$, $l = 5$, $d^i_j = 1 \ \forall i = 1, 2, j = 1, \ldots, 6$, $x^1_1 + 6y^1_2 + x^1_3 + y^1_4 + x^2_2 + 2y^2_4 + x^2_5 \geq 9$ is a valid inequality with following choices of T_1, T_2 and T_3.

![Diagram of valid inequalities]
Valid Inequalities

Proposition 1 (Zhang, K., Yaman, 2011)

Given a fractional point \((x^1, y^1, x^2, y^2) \in \mathbb{R}^{4n}\), there is an \(O(n^4)\) algorithm to find the most violated 2-echelon inequality, if any.

Separation:

- Shortest path problem on the network \(G = (V, A)\), for a given \(k\):
 \(V = \{1', 2, 2', \ldots, k, k', k + 1\}\) and \(A = \{(i', i + 1) : i = 1, \ldots, k\}\)
 \(\cup\{(i', (i + 1)') : i = 1, \ldots k\}\)
 \(\cup\{(i, j') : i \in [2, k - 2], j \in [i + 1, k - 1]\}\).

- Node \(i\) represents \(i \in T_2\), \(i'\) represents \(i' \not\in T_2\).

- For \(k = 4\), the shortest path network is:
Facility Location Formulation for 2-ULS

- **Variables:**
 - z_{ut}^{11}: the order quantity in period u at the first echelon to satisfy the intermediate demand in period t, $1 \leq u \leq t \leq n$;
 - z_{ut}^{12}: the order quantity in period u at the first echelon to satisfy the demand at the second echelon in period t, $1 \leq u \leq t \leq n$;
 - z_{ut}^{22}: the order quantity in period u at the second echelon to satisfy the demand at the second echelon in period t, $1 \leq u \leq t \leq n$.

Facility Location Formulation for 2-ULS

\[
\begin{align*}
\min & \quad \sum_{i=1}^{2} \sum_{t=1}^{n} (f_t^i y_t^i + c_t^i x_t^i) \\
\text{s.t.} & \quad \sum_{u=1}^{t} z_{ut}^{11} = d_t^1 \\
& \quad \sum_{u=1}^{t} z_{ut}^{22} = d_t^2 \\
& \quad \sum_{u=1}^{j} z_{ut}^{12} \geq \sum_{u=1}^{j} z_{ut}^{22} \\
& \quad z_{ut}^{11} \leq d_t^1 y_u^1 \\
& \quad z_{ut}^{12} \leq d_t^2 y_u^1 \\
& \quad z_{ut}^{22} \leq d_t^2 y_u^2 \\
& \quad x_t^1 = \sum_{u=t}^{n} (z_{tu}^{11} + z_{tu}^{12}) \\
& \quad x_t^2 = \sum_{u=t}^{n} z_{tu}^{22} \\
& \quad z_{ut}^{11}, z_{ut}^{12}, z_{ut}^{22} \geq 0 \\
y_t^i & \in \{0, 1\} \\
z_{ut}^{11}, z_{ut}^{12}, z_{ut}^{22} & \geq 0 \\
t \in [1, n], i \in [1, 2].
\end{align*}
\]
Facility Location Formulation for 2-ULS

- UFL formulation \equiv multi-commodity formulation (Rardin and Wolsey, 1993) after projecting out the inventory variables.
- Without intermediate demands, constraints (10) and (11) are redundant. (Pochet and Wolsey, 2006)

Proposition 2 (Zhang, K., Yaman, 2011)

2-echelon inequalities can be obtained by projecting the UFL formulation onto the (x^1, y^1, x^2, y^2) space.

Proof idea

Every valid projection inequality with 0-1 coefficients is a 2-echelon inequality.
Echelon Stock Formulation for 2-ULS

- **Variables:**
 - e^1_t: the total inventory at the first echelon at the end of period t, $t \in [1, n]$. Note that $e^1_t = s^1_t + s^2_t$.
 - e^2_t: the total inventory at the second echelon at the end of period t, $t \in [1, n]$. Note that $e^2_t = s^2_t$.

- **Echelon Stock Formulation:**

$$\min \sum_{i=1}^{2} \sum_{t=1}^{n} (f^i_t y^i_t + c^i_t x^i_t)$$

s.t. (5) – (8),

- $e^1_{t-1} + x^1_t = d^1_t + d^2_t + e^1_t$ \hspace{1cm} $t \in [1, n],$
- $e^2_{t-1} + x^2_t = d^2_t + e^2_t$ \hspace{1cm} $t \in [1, n],$
- $e^i_0 = e^i_n = 0$ \hspace{1cm} $i \in [1, 2],$
- $e^1_t \geq e^2_t$ \hspace{1cm} $t \in [1, n],$
- $e^i_t \geq 0$ \hspace{1cm} $t \in [1, n], i \in [1, 2]$.

Echelon Stock Formulation for 2-ULS

Proposition (*Zhang, K., Yaman, 2011*)

The natural formulation with 2-echelon inequalities is stronger than the echelon stock reformulation with \((\ell, S')\) inequalities.
Hierarchy of Formulations

From stronger to weaker:

- Projection of the DP-based extended formulation (DPEF);
- Projection of the UFL formulation (or equivalently multi-commodity formulation);
- Natural formulation with 2-echelon inequalities;
- Echelon stock formulation with \((\ell, S)\) inequalities.
- Natural formulation.
Computational Results

- Tests on **multi-item** 2-ULS with a mode constraint.
- Environment: 1 GHz Dual-Core AMD Opteron(tm) Processor 1218 with 2GB RAM.
- Solver: IBM ILOG CPLEX 12.0 with an hour time limit.
- Data generation:
 - Horizon: $n \in \{60, 90, 120\}$,
 - Ratios of fixed and unit order costs: $\beta \in \{500, 1000, 2500\}$,
 - Numbers of items $r \in \{5, 10\}$,
 - Capacities (the maximum number of items ordered in each period) $\kappa \in \{2, 3, 5\}$.
- Average of five instances for each combination of n, β, r, κ.
Computational Results

<table>
<thead>
<tr>
<th>n.β.r.κ</th>
<th>MIP</th>
<th>UFL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGap</td>
<td>EGap</td>
</tr>
<tr>
<td>60.500.5.2</td>
<td>42.86</td>
<td>14.62</td>
</tr>
<tr>
<td>60.500.10.3</td>
<td>42.29</td>
<td>20.80</td>
</tr>
<tr>
<td>60.1000.5.3</td>
<td>40.11</td>
<td>17.13</td>
</tr>
<tr>
<td>60.2500.10.5</td>
<td>28.03</td>
<td>2.54</td>
</tr>
<tr>
<td>90.500.5.3</td>
<td>51.27</td>
<td>24.63</td>
</tr>
<tr>
<td>90.1000.5.3</td>
<td>49.39</td>
<td>31.43</td>
</tr>
<tr>
<td>90.1000.10.5</td>
<td>48.63</td>
<td>35.15</td>
</tr>
<tr>
<td>90.2500.10.3</td>
<td>41.05</td>
<td>33.16</td>
</tr>
<tr>
<td>120.500.10.3</td>
<td>55.15</td>
<td>30.54</td>
</tr>
<tr>
<td>120.1000.5.3</td>
<td>55.30</td>
<td>38.40</td>
</tr>
<tr>
<td>120.2500.5.2</td>
<td>49.03</td>
<td>42.49</td>
</tr>
<tr>
<td>120.2500.10.5</td>
<td>48.98</td>
<td>46.01</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Size matters. (DPEF is too large.)
- UFL formulation is not tight in general, but extremely strong in practice.
- Complete linear description of 2-ULS in the original space is open (even with zero intermediate demands)
- Complete characterization of the UFL projection inequalities is open.
- Automatic reformulation ideas (van Roy and Wolsey, 1987)
Thanks!